Influence of selected (pre-)maturational parameters on in vitro development and sex distribution of bovine embryos.
نویسندگان
چکیده
The objectives of this research were to study the influence of a reduced oxygen concentration during in vitro maturation (IVM) and examine the effect of follicular glucose concentration on bovine in vitro development and sex distribution. In the first experiment, abattoir-derived cumulus-oocyte complexes (COC) were matured under 5% O2 or 20% O2. Secondly, COC were isolated and the glucose (G) concentration of each follicle was determined. COC were pooled in groups (G (< 1.1 mMol) or G (≥ 1.1 mMol)) according to the glucose content before being subjected to in vitro production (IVP). Cleavage and development rates were assessed on days 3, 7 and 8 post insemination. Blastocysts of each group were sexed by polymerase chain reaction (PCR). Expanded blastocysts were stained to assess total cell numbers and live-dead cell ratio. Cleavage and development rates stayed similar after reducing the O2 concentration during IVM. The sex ratio of embryos generated from oocytes matured under 5% O2 was shifted in favour of the female (♀: 61.9%), whereas the sex ratio of embryos belonging to the IVM 20% O2 group did not differ significantly from the expected 50:50 ratio. Neither a 'higher' nor a 'lower' intrafollicular glucose concentration influenced cleavage and development rates, cell numbers or live-dead cell ratio. Eighty five per cent (G (<1.1)) and 63.6% (G (≥ 1.1)) of the analysed embryos were female. In summary, neither a reduced O2 concentration during IVM nor selection based on follicular glucose concentrations affected the morphological quality of embryos. Although the sex distribution was shifted in favour of female embryos in all three experimental groups, more male embryos could be seen in the G (≥ 1.1) group compared with the G(<1.1) group.
منابع مشابه
The Effect of Vitrification and in vitro Culture on the Adenosine Triphosphate Content and Mitochondrial Distribution of Mouse Pre-Implantation Embryos
Background: The mitochondria are an important source of adenosine triphosphate (ATP) production in pre-implantation embryo. Therefore, the objective of this study was to investigate the effect of vitrification and in vitro culture of mouse embryos on their mitochondrial distribution and ATP content. Methods: The embryos at 2-PN, 4-cell and blastocyst stages were collected from the oviduct of st...
متن کاملO-7: Improved In Vitro Development of Cloned Bovine Embryos Using S-Adenosylhomocysteine,A Non-Toxic Epigenetic
Background: Development of cloned bovine embryos. Materials and Methods: Oocytes collection,oocyte denudation, oocyte enucleation, nuclear transfer, electrofusion, reconstructed embryo activation, culture of reconstructed and IVF embryo,and treatment with SAH post fusion interval Treatment of reconstructed embryos with TSA for 12 hours after activation, preparation of somatic donor cells, donor...
متن کاملP-115: Melatonin Increases Developmental Rate of In Vitro Mouse Somatic Cell Nuclear
Background: The beneficial effect of supplementing culture medium with melatonin has been reported during in vitro embryo development of species such as mouse, bovine and porcine. However, the effect of melatonin on the mouse somatic cell nuclear transfer remained unknown. Materials and Methods: In this study, we assessed the effects of various concentrations of melatonin (10-6 to 10-12 M) on t...
متن کاملIn Vitro Development of Cattle Embryo as Affected By Glucose, Serum and EDTA
Purpose: The aim of this study was to evaluate the effect of different modifications of sequential synthetic oviductal_fluid (SOF) culture system on developmental competence of in vitro matured/fertilized cattle embryos. Materials and Methods: Bovine oocytes were matured and fertilized in vitro and then presumptive zygotes were randomly cultured for up to 9 days in different modifications of SO...
متن کاملO-8: Critical Role of Hyaluronan System in Pre-Implantation Embryo Development and Establishment of Pregnancy
Background: Hyaluronan (HA) is a structural component of extracellular matrix synthesised by HA synthases HAS1-3, which produce HA of different molecular sizes with distinct biological functions associated with reproductive processes. Hyaluronidase (HYAL) cleaves the HA into biologically active small fragments which are known to regulate cell proliferation through CD44 receptor signaling. HA is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Zygote
دوره 22 1 شماره
صفحات -
تاریخ انتشار 2014